Newton method KAZUFUMI OZAWA

1 Fixed-point iteration

Consider the sequence $\{x_k\}$ given by

$$x_{k+1} = F(x_k), \qquad k = 0, 1, \dots,$$
 (1)

where $F : \mathbb{R} \to \mathbb{R}$. This iteration proceeds as in Figure 1. For the convergence of $\{x_k\}$ generated by (1), we have the following theorem (the fixed-point theorem):

Figure 1: Fixed-point iteration

Theorem 1 Let us assume that the function F satisfies the following conditions:

- 1. F(x) is contiguous on the interval I = [a, b].
- 2. For all $x \in I$, $F(x) \in I$.
- 3. For any $x, y \in I$, there exists a constant $0 \leq L < 1$, such that

$$|F(x) - F(y)| < L|x - y|$$

where L is independent of x and y.

Then the sequence $\{x_k\}$ generated by (1) with $x_0 \in I$ converges to the unique point $\alpha \in I$ which satisfies

$$F(\alpha) = \alpha. \tag{2}$$

The point given by (2) is called the *fixed-point*, and the iteration method given by (1) is called the *fixed-point iteration*.

Proof From the second assumption, we have $x_k \in I$ (k = 1, 2, ...), if $x_0 \in I$. Therefore, from the third assumption, we have

$$|x_{k+1} - x_k| = |F(x_k) - F(x_{k-1})| < L |x_k - x_{k-1}|.$$
(3)

Using this, we have for any m > 0

$$0 \le |x_{k+m} - x_k| \le |x_{k+m} - x_{k+m-1}| + |x_{k+m-1} - x_{k+m-2}| + \dots + |x_{k+1} - x_k|$$

$$\le (L^{k+m-1} + \dots + L^k) |x_1 - x_0|$$

$$= \frac{L^m - 1}{L - 1} L^k |x_1 - x_0| \to 0, \qquad k \to \infty.$$
(4)

Thus the sequence $\{x_k\}$ is a Cauchy sequence on I, which has a limit in I. Let α be the limit of the sequence $\{x_k\}$, then we have

$$\alpha = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} F(x_k) = F(\lim_{k \to \infty} x_k) = F(\alpha), \tag{5}$$

since F is continuous. This means α is a fixed-point of F. The point α is unique, since if this is not the case, then for another fixed-point β

$$|\alpha - \beta| = |F(\alpha) - F(\beta)| < L|\alpha - \beta| < |\alpha - \beta|,$$

Q.E.D

which is a contradiction.

Corollary Assume that F(x) is differentiable on (a, b) and |F'(x)| < 1 on I. Then the sequence $\{x_k\}$ generated by (1) with $x_0 \in I$ converges to α , if the first two conditions of Theorem 1 are satisfied.

2 Newton method

2.1 Newton method as a fixed-point iteration

Consider the problem of solving the nonlinear equation

$$f(x) = 0, (6)$$

where $f : \mathbb{R} \to \mathbb{R}$. Let F(x) be

$$F(x) = x - f(x)/f'(x),$$
 (7)

then the solution α of the equation (6) is also the fixed-point of F(x). Since the derivative of F(x) at α is given by

$$F'(\alpha) = 1 - \frac{(f'(x))^2 - f(x) f'(x)}{(f'(x))^2} \Big|_{x=\alpha} = 0,$$
(8)

the condition of the corollary is satisfied in the neighbor of α , and therefore the sequence

$$x_{k+1} = x_k - f(x_k)/f'(x_k), \qquad k = 0, 1, \dots$$
 (9)

converges to the solution of f(x) = 0, when the starting value x_0 is located at the neighbor of α . The method defined by (9) is called the *Newton method*.

Figure 2: Geometrical interpretation of the Newton method.

2.2 Convergence rate

Let e_k be the error of x_k , i.e., $e_k = x_k - \alpha$, then from the Taylor expansion of F(x), we have

$$e_{k+1} = x_{k+1} - \alpha = F(x_k) - F(\alpha)$$

= $F'(\alpha) (x_k - \alpha) + \frac{1}{2!} F''(\xi) (x_k - \alpha)^2$ (10)

where ξ is some value between α and x_k . From this we have $|e_{k+1}| \leq c |e_k^2|$, where $c = \max_x |F''(x)|/2$.

Example 1 Consider the equation

$$x^3 - 2x + 2 = 0. (11)$$

We solve the equation by the Newton method (9) with $x_0 = -1.1$.

2.3 Simultaneous equation

Consider the system of the equations

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0\\ f_2(x_1, x_2, \dots, x_n) = 0\\ & \dots\\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$
(12)

k	x_k	$f(x_k)$
0	-1.100000000000000e+00	2.869e+00
1	-2.860122699386503e+00	-1.568e+01
2	-2.164657223087728e+00	-3.814e+00
3	-1.848356485722793e+00	-6.181e-01
4	-1.773434389574454e+00	-3.071e-02
5	-1.769304621075152e+00	-9.067e-05
6	-1.769292354346692e+00	-7.987e-10
7	-1.769292354238631e+00	8.327e-17

Table 1: Newton method applied to the equation $x^3 - 2x + 2 = 0$.

and the Newton method for solving the equation. Denoting the k th approximations by $x_1^{[k]}, \ldots, x_n^{[k]}$, the Newton method for solving (12) is given by

$$\begin{pmatrix} x_1^{[k+1]} \\ x_2^{[k+1]} \\ \vdots \\ x_n^{[k+1]} \end{pmatrix} = \begin{pmatrix} x_1^{[k]} \\ x_2^{[k]} \\ \vdots \\ x_n^{[k]} \end{pmatrix} - J^{-1} \begin{pmatrix} f_1(x_1^{[k]}, x_2^{[k]}, \dots, x_n^{[k]}) \\ f_2(x_1^{[k]}, x_2^{[k]}, \dots, x_n^{[k]}) \\ \vdots \\ f_n(x_1^{[k]}, x_2^{[k]}, \dots, x_n^{[k]}) \end{pmatrix}, \qquad k = 0, 1, \dots,$$
(13)

where J is the Jacobian matrix given by

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

In computing (13), we never calculate the inverse matrix J^{-1} , but instead solve the simultaneous linear equation , [1] [1] [1] \

$$J\begin{pmatrix} d_1\\ d_2\\ \vdots\\ d_n \end{pmatrix} = - \begin{pmatrix} f_1(x_1^{[k]}, x_2^{[k]}, \dots, x_n^{[k]})\\ f_2(x_1^{[k]}, x_2^{[k]}, \dots, x_n^{[k]})\\ \vdots\\ f_n(x_1^{[k]}, x_2^{[k]}, \dots, x_n^{[k]}) \end{pmatrix}$$
(14)

by the Gaussian elimination, and after that we calculate $x_i^{[k+1]} = x_i^{[k]} + d_i \ (i = 1, ..., n)$.

In computing the Newton method, the computational costs for the Jacobian matrix J and for solving (14) are proportional to n^2 and n^3 , respectively. To reduce these costs, particularly when n is large, we usually use the quasi Newton method, in which the Jacobian matrix is calculated only for $x_i^{(0)}$ (i = 1, ..., n) and is fixed until convergence. Next we consider the convergence of the Newton method for multi-dimensional cases. Let α_i

be the *i*th solution, that is the value $f(\alpha_1, \ldots, \alpha_n) = 0$, where $f \in \mathbb{R}^n$, and $x_i^{[k]}$ be the *k*th

approximation to α_i . Here, we use the vector notations

$$\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)^T, \quad \boldsymbol{x}^{[k]} = (x_1^{[k]}, \dots, x_n^{[k]})^T, \boldsymbol{f}(\boldsymbol{x}^{[k]}) = (f_1(x_1^{[k]}, \dots, x_n^{[k]}), \dots, f_n(x_1^{[k]}, \dots, x_n^{[k]}))^T, J((x_1^{[k]}, \dots, x_n^{[k]}) = J(\boldsymbol{x}^{[k]}).$$

Then the error of $\boldsymbol{x}^{[k]},$ that is $\boldsymbol{e}^{[k]} = \boldsymbol{x}^{[k]} - \boldsymbol{\alpha},$ is given by

$$e^{[k+1]} = e^{[k]} - J(x^{[k]})^{-1} f(x^{[k]}).$$
(15)

From the Taylor expansion, we have

$$f(\boldsymbol{x}^{[k]}) = f(\boldsymbol{\alpha}) + J(\boldsymbol{x}^{[k]}) (\boldsymbol{x}^{[k]} - \boldsymbol{\alpha}) + O(\|\boldsymbol{x}^{[k]} - \boldsymbol{\alpha}\|^2) = J(\boldsymbol{x}^{[k]}) \boldsymbol{e}^{[k]} + O(\|\boldsymbol{e}^{[k]}\|^2).$$
(16)

Substituting this into (15), we have

$$\|\boldsymbol{e}^{[k+1]}\| = O(\|\boldsymbol{e}^{[k]}\|^2), \tag{17}$$

which means that the Newton method (13) converges quadratically.

Example 2 Consider the simultaneous nonlinear equation

$$\begin{cases} f(x,y) = -\frac{x^2}{4} - \frac{y^2}{9} + 1 = 0, \\ g(x,y) = x^2 - y = 0. \end{cases}$$
(18)

The Newton method for this equation is

$$\begin{cases} x_{k+1} = x_k + \frac{-g_y f + f_y g}{f_x g_y - f_y g_x}, \\ y_{k+1} = y_k + \frac{g_x f - f_x g}{f_x g_y - f_y g_x}, \end{cases} \quad k = 0, 1, \dots$$
(19)

where

$$f_x = \frac{\partial f}{\partial x}, \qquad f_y = \frac{\partial f}{\partial y},$$
$$g_x = \frac{\partial g}{\partial x}, \qquad g_y = \frac{\partial f}{\partial y},$$

and f, g, f_x, f_y, g_x and g_y are evaluated at (x_k, y_k) . We find the solution in the region x > 0, y > 0 by the Newton method. The exact solution in the region is

$$x = \sqrt{\frac{-9 + \sqrt{657}}{8}} = 1.441874268\cdots, \qquad y = \frac{-9 + \sqrt{657}}{8} = 2.079001404\cdots$$

Here is the C program of the Newton method.

```
1: /*
 2:
       Newton method for the equation
 3:
         f(x,y)=0
         g(x,y)=0
4:
5: */
6: #include <stdio.h>
7: #include <math.h>
8:
9: #define eps 1.0e-15
10:
11: void func(x,y,f,g,fx,fy,gx,gy)
12:
         double x,y,*f,*g,*fx,*fy,*gx,*gy;
13: {
      *f=-x*x/4-y*y/9+1; *fx=-x/2; *fy=-2*y/9;
14:
15:
      *g=x*x-y; *gx=2*x; *gy=-1;
16: }
17:
18: main()
19: {
20:
      double d,e,x0,y0,x1,y1;
21:
      double f,g,fx,fy,gx,gy;
22:
      int k=0;
23:
24:
      x0=1; y0=1;
      func(x0, x0, &f, &g, &fx, &fy, &gx, &gy);
25:
26:
      e=fabs(f)+fabs(g);
      printf(" %3d %12.8f %12.8f %12.4e \n",k,x0,y0,e);
27:
28:
29:
      do {
30:
        d=fx*gy-fy*gx;
31:
        x1=x0+(-gy*f+fy*g)/d;
32:
        y1=y0+( gx*f-fx*g)/d;
33:
        x0=x1; y0=y1; k++;
34:
35:
        func(x0, y0, &f, &g, &fx, &fy, &gx, &gy);
36:
        e=fabs(f)+fabs(g);
37:
        printf(" %3d %12.8f %12.8f %12.4e \n",k,x0,y0,e);
38:
      } while (e>eps);
39: }
```

k	\overline{x}_k	\overline{y}_k	$ f(x_k,y_k) + g(x_k,y_k) $
0	1.00000000	1.00000000	6.3889e-01
1	1.67647059	2.35294118	7.7540e-01
2	1.46150594	2.08978983	6.5457e-02
3	1.44201231	2.07901951	4.8789e-04
4	1.44187427	2.07900140	2.3854e-08
5	1.44187427	2.07900140	3.1499e-16

Table 2: Newton method applied to equation (18).