
Newton method
Kazufumi OZAWA

1 Fixed-point iteration

Consider the sequence {xk} given by

xk+1 = F (xk), k = 0, 1, . . . , (1)

where F : R → R. This iteration proceeds as in Figure 1. For the convergence of {xk} generated
by (1), we have the following theorem (the fixed-point theorem):

 0

 1

 2

 3

 4

 0 1 2 3 4

y = x

y = F (x)

x0 x1 x2 α

Figure 1: Fixed-point iteration

Theorem 1 Let us assume that the function F satisfies the following conditions:

1. F (x) is contiguous on the interval I = [a, b].

2. For all x ∈ I, F (x) ∈ I.

3. For any x, y ∈ I, there exists a constant 0 ≤ L < 1, such that

|F (x) − F (y)| < L |x − y|,

where L is independent of x and y.

1

Then the sequence {xk} generated by (1) with x0 ∈ I converges to the unique point α ∈ I which
satisfies

F (α) = α. (2)

The point given by (2) is called the fixed-point, and the iteration method given by (1) is called the
fixed-point iteration.

Proof From the second assumption, we have xk ∈ I (k = 1, 2, . . .), if x0 ∈ I. Therefore, from the
third assumption, we have

|xk+1 − xk| = |F (xk) − F (xk−1) | < L |xk − xk−1|. (3)

Using this, we have for any m > 0

0 ≤ |xk+m − xk| ≤ |xk+m − xk+m−1| + |xk+m−1 − xk+m−2| + · · · + |xk+1 − xk|
≤ (Lk+m−1 + . . . + Lk) |x1 − x0|

=
Lm − 1

L − 1
Lk |x1 − x0| → 0, k → ∞.

(4)

Thus the sequence {xk} is a Cauchy sequence on I, which has a limit in I. Let α be the limit of
the sequence {xk}, then we have

α = lim
k→∞

xk+1 = lim
k→∞

F (xk) = F (lim
k→∞

xk) = F (α), (5)

since F is continuous. This means α is a fixed-point of F . The point α is unique, since if this is
not the case, then for another fixed-point β

|α − β| = |F (α) − F (β)| < L|α − β| < |α − β|,

which is a contradiction. Q.E.D

Corollary Assume that F (x) is differentiable on (a, b) and |F ′(x)| < 1 on I. Then the sequence
{xk} generated by (1) with x0 ∈ I converges to α, if the first two conditions of Theorem 1 are
satisfied.

2 Newton method

2.1 Newton method as a fixed-point iteration

Consider the problem of solving the nonlinear equation

f(x) = 0, (6)

where f : R → R. Let F (x) be
F (x) = x − f(x)/f ′(x), (7)

then the solution α of the equation (6) is also the fixed-point of F (x). Since the derivative of F (x)
at α is given by

F ′(α) = 1 − (f ′(x))2 − f(x) f ′(x)

(f ′(x))2

∣

∣

∣

∣

x=α

= 0, (8)

2

the condition of the corollary is satisfied in the neighbor of α, and therefore the sequence

xk+1 = xk − f(xk)/f
′(xk), k = 0, 1, . . . (9)

converges to the solution of f(x) = 0, when the starting value x0 is located at the neighbor of α.
The method defined by (9) is called the Newton method.

x0x1x2

α

y = f(x)

Figure 2: Geometrical interpretation of the Newton method.

2.2 Convergence rate

Let ek be the error of xk, i.e., ek = xk − α, then from the Taylor expansion of F (x), we have

ek+1 = xk+1 − α = F (xk) − F (α)

= F ′(α) (xk − α) +
1

2!
F ′′(ξ) (xk − α)2

(10)

where ξ is some value between α and xk. From this we have | ek+1 | ≤ c| e2
k |, where c = maxx |F ′′(x) |/2.

Example 1 Consider the equation

x3 − 2x + 2 = 0. (11)

We solve the equation by the Newton method (9) with x0 = −1.1.

2.3 Simultaneous equation

Consider the system of the equations

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

· · ·
fn(x1, x2, . . . , xn) = 0

(12)

3

Table 1: Newton method applied to the equation x3 − 2x + 2 = 0.

k xk f(xk)

0 -1.100000000000000e+00 2.869e+00

1 -2.860122699386503e+00 -1.568e+01

2 -2.164657223087728e+00 -3.814e+00

3 -1.848356485722793e+00 -6.181e-01

4 -1.773434389574454e+00 -3.071e-02

5 -1.769304621075152e+00 -9.067e-05

6 -1.769292354346692e+00 -7.987e-10

7 -1.769292354238631e+00 8.327e-17

and the Newton method for solving the equation. Denoting the k th approximations by x
[k]
1 , . . . , x

[k]
n ,

the Newton method for solving (12) is given by

x
[k+1]
1

x
[k+1]
2
...

x
[k+1]
n

=

x
[k]
1

x
[k]
2
...

x
[k]
n

− J−1

f1(x
[k]
1 , x

[k]
2 , . . . , x

[k]
n)

f2(x
[k]
1 , x

[k]
2 , . . . , x

[k]
n)

...

fn(x
[k]
1 , x

[k]
2 , . . . , x

[k]
n)

, k = 0, 1, . . . , (13)

where J is the Jacobian matrix given by

J =

∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
... · · · ...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn

.

In computing (13), we never calculate the inverse matrix J−1, but instead solve the simultaneous
linear equation

J

d1

d2
...

dn

= −

f1(x
[k]
1 , x

[k]
2 , . . . , x

[k]
n)

f2(x
[k]
1 , x

[k]
2 , . . . , x

[k]
n)

...

fn(x
[k]
1 , x

[k]
2 , . . . , x

[k]
n)

(14)

by the Gaussian elimination, and after that we calculate x
[k+1]
i = x

[k]
i + di (i = 1, . . . , n).

In computing the Newton method, the computational costs for the Jacobian matrix J and for
solving (14) are proportional to n2 and n3, respectively. To reduce these costs, particularly when n
is large, we usually use the quasi Newton method, in which the Jacobian matrix is calculated only

for x
(0)
i (i = 1, . . . , n) and is fixed until convergence.

Next we consider the convergence of the Newton method for multi-dimensional cases. Let αi

be the i th solution, that is the value f(α1, . . . , αn) = 0, where f ∈ R
n, and x

[k]
i be the k th

4

approximation to αi. Here, we use the vector notations

α = (α1, . . . , αn)T , x[k] = (x
[k]
1 , . . . , x[k]

n)T ,

f(x[k]) = (f1(x
[k]
1 , . . . , x[k]

n), . . . , fn(x
[k]
1 , . . . , x[k]

n))T ,

J((x
[k]
1 , . . . , x[k]

n) = J(x[k]).

Then the error of x[k], that is e[k] = x[k] − α, is given by

e[k+1] = e[k] − J(x[k])−1 f(x[k]). (15)

From the Taylor expansion, we have

f(x[k]) = f(α) + J(x[k]) (x[k] − α) + O(‖x[k] − α‖2)

= J(x[k])e[k] + O(‖e[k]‖2).
(16)

Substituting this into (15), we have

‖e[k+1]‖ = O(‖e[k]‖2), (17)

which means that the Newton method (13) converges quadratically.

Example 2 Consider the simultaneous nonlinear equation

f(x, y) = −x2

4
− y2

9
+ 1 = 0,

g(x, y) = x2 − y = 0.

(18)

The Newton method for this equation is

xk+1 = xk +
−gy f + fy g

fx gy − fy gx

,

yk+1 = yk +
gx f − fx g

fx gy − fy gx

,

k = 0, 1, . . . (19)

where

fx =
∂f

∂x
, fy =

∂f

∂y
,

gx =
∂g

∂x
, gy =

∂f

∂y
,

and f, g, fx, fy, gx and gy are evaluated at (xk, yk). We find the solution in the region x > 0, y > 0
by the Newton method. The exact solution in the region is

x =

√

−9 +
√

657

8
= 1.441874268 · · · , y =

−9 +
√

657

8
= 2.079001404 · · ·

Here is the C program of the Newton method.

5

1: /*
2: Newton method for the equation
3: f(x,y)=0
4: g(x,y)=0
5: */
6: #include <stdio.h>
7: #include <math.h>
8:
9: #define eps 1.0e-15

10:
11: void func(x,y,f,g,fx,fy,gx,gy)
12: double x,y,*f,*g,*fx,*fy,*gx,*gy;
13: {
14: *f=-x*x/4-y*y/9+1; *fx=-x/2; *fy=-2*y/9;
15: *g=x*x-y; *gx=2*x; *gy=-1;
16: }
17:
18: main()
19: {
20: double d,e,x0,y0,x1,y1;
21: double f,g,fx,fy,gx,gy;
22: int k=0;
23:
24: x0=1; y0=1;
25: func(x0, x0, &f, &g, &fx, &fy, &gx, &gy);
26: e=fabs(f)+fabs(g);
27: printf(" %3d %12.8f %12.8f %12.4e \n",k,x0,y0,e);
28:
29: do {
30: d=fx*gy-fy*gx;
31: x1=x0+(-gy*f+fy*g)/d;
32: y1=y0+(gx*f-fx*g)/d;
33:
34: x0=x1; y0=y1; k++;
35: func(x0, y0, &f, &g, &fx, &fy, &gx, &gy);
36: e=fabs(f)+fabs(g);
37: printf(" %3d %12.8f %12.8f %12.4e \n",k,x0,y0,e);
38: } while (e>eps);
39: }

Table 2: Newton method applied to equation (18).

k xk yk |f(xk, yk)| + |g(xk, yk)|
0 1.00000000 1.00000000 6.3889e-01

1 1.67647059 2.35294118 7.7540e-01

2 1.46150594 2.08978983 6.5457e-02

3 1.44201231 2.07901951 4.8789e-04

4 1.44187427 2.07900140 2.3854e-08

5 1.44187427 2.07900140 3.1499e-16

6

