1 Fixed-point iteration

Consider the sequence $\left\{x_{k}\right\}$ given by

$$
\begin{equation*}
x_{k+1}=F\left(x_{k}\right), \quad k=0,1, \ldots, \tag{1}
\end{equation*}
$$

where $F: \mathbb{R} \rightarrow \mathbb{R}$. This iteration proceeds as in Figure 1. For the convergence of $\left\{x_{k}\right\}$ generated by (1), we have the following theorem (the fixed-point theorem):

Figure 1: Fixed-point iteration

Theorem 1 Let us assume that the function F satisfies the following conditions:

1. $F(x)$ is contiguous on the interval $I=[a, b]$.
2. For all $x \in I, F(x) \in I$.
3. For any $x, y \in I$, there exists a constant $0 \leq L<1$, such that

$$
|F(x)-F(y)|<L|x-y|,
$$

where L is independent of x and y.

Then the sequence $\left\{x_{k}\right\}$ generated by (1) with $x_{0} \in I$ converges to the unique point $\alpha \in I$ which satisfies

$$
\begin{equation*}
F(\alpha)=\alpha . \tag{2}
\end{equation*}
$$

The point given by (2) is called the fixed-point, and the iteration method given by (1) is called the fixed-point iteration.

Proof From the second assumption, we have $x_{k} \in I(k=1,2, \ldots)$, if $x_{0} \in I$. Therefore, from the third assumption, we have

$$
\begin{equation*}
\left|x_{k+1}-x_{k}\right|=\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|<L\left|x_{k}-x_{k-1}\right| . \tag{3}
\end{equation*}
$$

Using this, we have for any $m>0$

$$
\begin{align*}
0 \leq\left|x_{k+m}-x_{k}\right| & \leq\left|x_{k+m}-x_{k+m-1}\right|+\left|x_{k+m-1}-x_{k+m-2}\right|+\cdots+\left|x_{k+1}-x_{k}\right| \\
& \leq\left(L^{k+m-1}+\ldots+L^{k}\right)\left|x_{1}-x_{0}\right| \tag{4}\\
& =\frac{L^{m}-1}{L-1} L^{k}\left|x_{1}-x_{0}\right| \rightarrow 0, \quad k \rightarrow \infty
\end{align*}
$$

Thus the sequence $\left\{x_{k}\right\}$ is a Cauchy sequence on I, which has a limit in I. Let α be the limit of the sequence $\left\{x_{k}\right\}$, then we have

$$
\begin{equation*}
\alpha=\lim _{k \rightarrow \infty} x_{k+1}=\lim _{k \rightarrow \infty} F\left(x_{k}\right)=F\left(\lim _{k \rightarrow \infty} x_{k}\right)=F(\alpha), \tag{5}
\end{equation*}
$$

since F is continuous. This means α is a fixed-point of F. The point α is unique, since if this is not the case, then for another fixed-point β

$$
|\alpha-\beta|=|F(\alpha)-F(\beta)|<L|\alpha-\beta|<|\alpha-\beta|,
$$

which is a contradiction.
Q.E.D

Corollary Assume that $F(x)$ is differentiable on (a, b) and $\left|F^{\prime}(x)\right|<1$ on I. Then the sequence $\left\{x_{k}\right\}$ generated by (1) with $x_{0} \in I$ converges to α, if the first two conditions of Theorem 1 are satisfied.

2 Newton method

2.1 Newton method as a fixed-point iteration

Consider the problem of solving the nonlinear equation

$$
\begin{equation*}
f(x)=0, \tag{6}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $F(x)$ be

$$
\begin{equation*}
F(x)=x-f(x) / f^{\prime}(x), \tag{7}
\end{equation*}
$$

then the solution α of the equation (6) is also the fixed-point of $F(x)$. Since the derivative of $F(x)$ at α is given by

$$
\begin{equation*}
F^{\prime}(\alpha)=1-\left.\frac{\left(f^{\prime}(x)\right)^{2}-f(x) f^{\prime}(x)}{\left(f^{\prime}(x)\right)^{2}}\right|_{x=\alpha}=0 \tag{8}
\end{equation*}
$$

the condition of the corollary is satisfied in the neighbor of α, and therefore the sequence

$$
\begin{equation*}
x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right), \quad k=0,1, \ldots \tag{9}
\end{equation*}
$$

converges to the solution of $f(x)=0$, when the starting value x_{0} is located at the neighbor of α. The method defined by (9) is called the Newton method.

Figure 2: Geometrical interpretation of the Newton method.

2.2 Convergence rate

Let e_{k} be the error of x_{k}, i.e., $e_{k}=x_{k}-\alpha$, then from the Taylor expansion of $F(x)$, we have

$$
\begin{align*}
e_{k+1}=x_{k+1}-\alpha & =F\left(x_{k}\right)-F(\alpha) \\
& =F^{\prime}(\alpha)\left(x_{k}-\alpha\right)+\frac{1}{2!} F^{\prime \prime}(\xi)\left(x_{k}-\alpha\right)^{2} \tag{10}
\end{align*}
$$

where ξ is some value between α and x_{k}. From this we have $\left|e_{k+1}\right| \leq c\left|e_{k}^{2}\right|$, where $c=\max _{x}\left|F^{\prime \prime}(x)\right| / 2$.

Example 1 Consider the equation

$$
\begin{equation*}
x^{3}-2 x+2=0 . \tag{11}
\end{equation*}
$$

We solve the equation by the Newton method (9) with $x_{0}=-1.1$.

2.3 Simultaneous equation

Consider the system of the equations

$$
\left\{\begin{align*}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0 \tag{12}\\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0 \\
\ldots & \\
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =0
\end{align*}\right.
$$

Table 1: Newton method applied to the equation $x^{3}-2 x+2=0$.

k	x_{k}	$f\left(x_{k}\right)$
0	$-1.100000000000000 \mathrm{e}+00$	$2.869 \mathrm{e}+00$
1	$-2.860122699386503 \mathrm{e}+00$	$-1.568 \mathrm{e}+01$
2	$-2.164657223087728 \mathrm{e}+00$	$-3.814 \mathrm{e}+00$
3	$-1.848356485722793 \mathrm{e}+00$	$-6.181 \mathrm{e}-01$
4	$-1.773434389574454 \mathrm{e}+00$	$-3.071 \mathrm{e}-02$
5	$-1.769304621075152 \mathrm{e}+00$	$-9.067 \mathrm{e}-05$
6	$-1.769292354346692 \mathrm{e}+00$	$-7.987 \mathrm{e}-10$
7	$-1.769292354238631 \mathrm{e}+00$	$8.327 \mathrm{e}-17$

and the Newton method for solving the equation. Denoting the k th approximations by $x_{1}^{[k]}, \ldots, x_{n}^{[k]}$, the Newton method for solving (12) is given by

$$
\left(\begin{array}{c}
x_{1}^{[k+1]} \tag{13}\\
x_{2}^{[k+1]} \\
\vdots \\
x_{n}^{[k+1]}
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{[k]} \\
x_{2}^{[k]} \\
\vdots \\
x_{n}^{[k]}
\end{array}\right)-J^{-1}\left(\begin{array}{c}
f_{1}\left(x_{1}^{[k]}, x_{2}^{[k]}, \ldots, x_{n}^{[k]}\right) \\
f_{2}\left(x_{1}^{[k]}, x_{2}^{[k]}, \ldots, x_{n}^{[k]}\right) \\
\vdots \\
f_{n}\left(x_{1}^{[k]}, x_{2}^{[k]}, \ldots, x_{n}^{[k]}\right)
\end{array}\right), \quad k=0,1, \ldots,
$$

where J is the Jacobian matrix given by

$$
J=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right) .
$$

In computing (13), we never calculate the inverse matrix J^{-1}, but instead solve the simultaneous linear equation

$$
J\left(\begin{array}{c}
d_{1} \tag{14}\\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right)=-\left(\begin{array}{c}
f_{1}\left(x_{1}^{[k]}, x_{2}^{[k]}, \ldots, x_{n}^{[k]}\right) \\
f_{2}\left(x_{1}^{[k]}, x_{2}^{[k]}, \ldots, x_{n}^{[k]}\right) \\
\vdots \\
f_{n}\left(x_{1}^{[k]}, x_{2}^{[k]}, \ldots, x_{n}^{[k]}\right)
\end{array}\right)
$$

by the Gaussian elimination, and after that we calculate $x_{i}^{[k+1]}=x_{i}^{[k]}+d_{i}(i=1, \ldots, n)$.
In computing the Newton method, the computational costs for the Jacobian matrix J and for solving (14) are proportional to n^{2} and n^{3}, respectively. To reduce these costs, particularly when n is large, we usually use the quasi Newton method, in which the Jacobian matrix is calculated only for $x_{i}^{(0)}(i=1, \ldots, n)$ and is fixed until convergence.

Next we consider the convergence of the Newton method for multi-dimensional cases. Let α_{i} be the i th solution, that is the value $\boldsymbol{f}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0$, where $\boldsymbol{f} \in \mathbb{R}^{n}$, and $x_{i}^{[k]}$ be the k th
approximation to α_{i}. Here, we use the vector notations

$$
\begin{aligned}
& \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}, \quad \boldsymbol{x}^{[k]}=\left(x_{1}^{[k]}, \ldots, x_{n}^{[k]}\right)^{T} \\
& \boldsymbol{f}\left(\boldsymbol{x}^{[k]}\right)=\left(f_{1}\left(x_{1}^{[k]}, \ldots, x_{n}^{[k]}\right), \ldots, f_{n}\left(x_{1}^{[k]}, \ldots, x_{n}^{[k]}\right)\right)^{T}, \\
& J\left(\left(x_{1}^{[k]}, \ldots, x_{n}^{[k]}\right)=J\left(\boldsymbol{x}^{[k]}\right) .\right.
\end{aligned}
$$

Then the error of $\boldsymbol{x}^{[k]}$, that is $\boldsymbol{e}^{[k]}=\boldsymbol{x}^{[k]}-\boldsymbol{\alpha}$, is given by

$$
\begin{equation*}
e^{[k+1]}=\boldsymbol{e}^{[k]}-J\left(\boldsymbol{x}^{[k]}\right)^{-1} \boldsymbol{f}\left(\boldsymbol{x}^{[k]}\right) \tag{15}
\end{equation*}
$$

From the Taylor expansion, we have

$$
\begin{align*}
\boldsymbol{f}\left(\boldsymbol{x}^{[k]}\right) & =\boldsymbol{f}(\boldsymbol{\alpha})+J\left(\boldsymbol{x}^{[k]}\right)\left(\boldsymbol{x}^{[k]}-\boldsymbol{\alpha}\right)+O\left(\left\|\boldsymbol{x}^{[k]}-\boldsymbol{\alpha}\right\|^{2}\right) \tag{16}\\
& =J\left(\boldsymbol{x}^{[k]}\right) \boldsymbol{e}^{[k]}+O\left(\left\|\boldsymbol{e}^{[k]}\right\|^{2}\right)
\end{align*}
$$

Substituting this into (15), we have

$$
\begin{equation*}
\left\|e^{[k+1]}\right\|=O\left(\left\|e^{[k]}\right\|^{2}\right) \tag{17}
\end{equation*}
$$

which means that the Newton method (13) converges quadratically.

Example 2 Consider the simultaneous nonlinear equation

$$
\left\{\begin{array}{l}
f(x, y)=-\frac{x^{2}}{4}-\frac{y^{2}}{9}+1=0 \tag{18}\\
g(x, y)=x^{2}-y=0
\end{array}\right.
$$

The Newton method for this equation is

$$
\left\{\begin{array}{l}
x_{k+1}=x_{k}+\frac{-g_{y} f+f_{y} g}{f_{x} g_{y}-f_{y} g_{x}}, \tag{19}\\
y_{k+1}=y_{k}+\frac{g_{x} f-f_{x} g}{f_{x} g_{y}-f_{y} g_{x}},
\end{array} \quad k=0,1, \ldots\right.
$$

where

$$
\begin{array}{ll}
f_{x}=\frac{\partial f}{\partial x}, & f_{y}=\frac{\partial f}{\partial y}, \\
g_{x}=\frac{\partial g}{\partial x}, & g_{y}=\frac{\partial f}{\partial y},
\end{array}
$$

and $f, g, f_{x}, f_{y}, g_{x}$ and g_{y} are evaluated at $\left(x_{k}, y_{k}\right)$. We find the solution in the region $x>0, y>0$ by the Newton method. The exact solution in the region is

$$
x=\sqrt{\frac{-9+\sqrt{657}}{8}}=1.441874268 \cdots, \quad y=\frac{-9+\sqrt{657}}{8}=2.079001404 \cdots
$$

Here is the C program of the Newton method.

```
/*
    Newton method for the equation
        f(x,y)=0
        g(x,y)=0
*/
#include <stdio.h>
#include <math.h>
#define eps 1.0e-15
void func(x,y,f,g,fx,fy,gx,gy)
        double x,y,*f,*g,*fx,*fy,*gx,*gy;
{
    *f=-x*x/4-y*y/9+1; *fx=-x/2; *fy=-2*y/9;
    *g=x*x-y; *gx=2*x; *gy=-1;
}
main()
{
    double d,e,x0,y0,x1,y1;
    double f,g,fx,fy,gx,gy;
    int k=0;
    x0=1; y0=1;
    func(x0, x0, &f, &g, &fx, &fy, &gx, &gy);
    e=fabs(f)+fabs(g);
    printf(" %3d %12.8f %12.8f %12.4e \n",k,x0,y0,e);
    do {
        d=fx*gy-fy*gx;
        x1=x0+(-gy*f+fy*g)/d;
        y1=y0+( gx*f-fx*g)/d;
        x0=x1; y0=y1; k++;
        func(x0, y0, &f, &g, &fx, &fy, &gx, &gy);
        e=fabs(f)+fabs(g);
        printf(" %3d %12.8f %12.8f %12.4e \n",k,x0,y0,e);
    } while (e>eps);
}
```

Table 2: Newton method applied to equation (18).

k	x_{k}	y_{k}	$\left\|f\left(x_{k}, y_{k}\right)\right\|+\left\|g\left(x_{k}, y_{k}\right)\right\|$
0	1.00000000	1.00000000	$6.3889 \mathrm{e}-01$
1	1.67647059	2.35294118	$7.7540 \mathrm{e}-01$
2	1.46150594	2.08978983	$6.5457 \mathrm{e}-02$
3	1.44201231	2.07901951	$4.8789 \mathrm{e}-04$
4	1.44187427	2.07900140	$2.3854 \mathrm{e}-08$
5	1.44187427	2.07900140	$3.1499 \mathrm{e}-16$

